WELCOME TO THE 2021 NDACAN SUMMER TRAINING SERIES!

- The session will begin at 12pm EST.
- Please submit questions to the Q&A box.
- This session is being recorded.

NDACAN SUMMER TRAINING SERIES

National Data Archive on Child Abuse and Neglect

Cornell University & Duke University

DATA STRATEGIES FOR THE STUDY OF CHILD WELFARE

NDACAN SUMMER TRAINING SERIES SCHEDULE

- July 7, 2021 Introduction to NDACAN
- July 14, 2021 Survey Based Data
- July 21, 2021 Administrative Data and Linking
- July 28, 2021 VCIS Data and Special Populations
- August 4, 2021 Multilevel Modeling Workshop
- August 11, 2021 Latent Class Analysis Workshop

SESSION AGENDA

- Describe the basic components of a multilevel model
- Describe the multi-level structure of AFCARS
- Estimate simple multilevel models in R using AFCARS

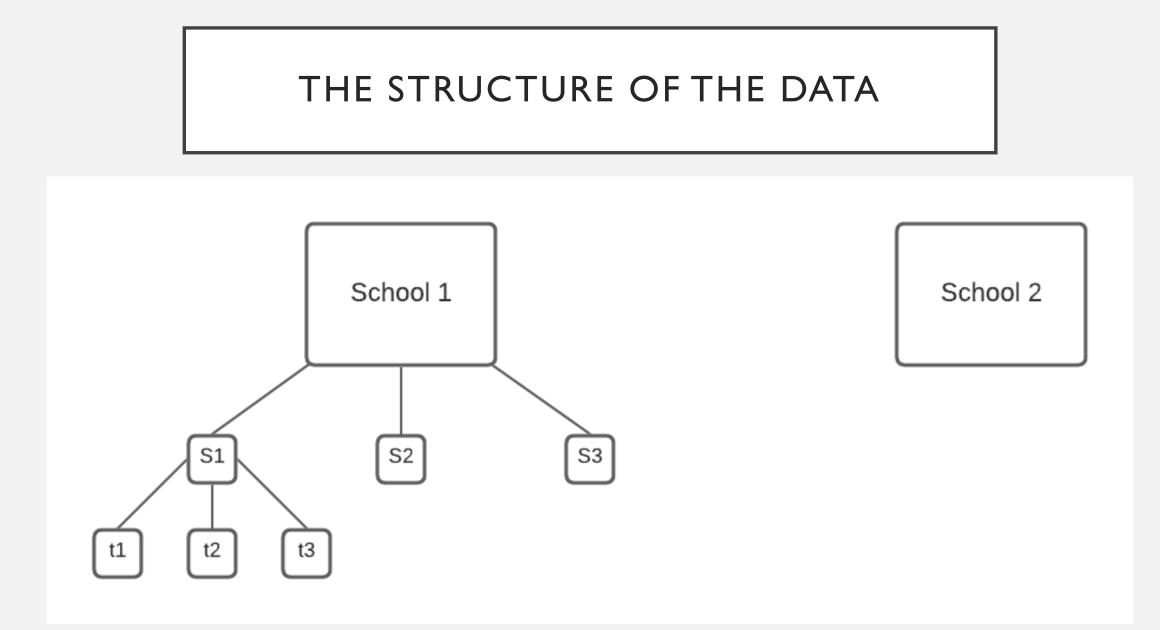
UNDERSTANDING MULTILEVEL DATA

THINKING ABOUT LEVELS

- We typically model data with the *iid* (independent and identically distributed) assumption.
 - This is a key assumption of most regression models (i.e. OLS)
- What does *iid* really mean?
 - Observations are independent of each other
 - Observations come from the same data generating process (or probability distribution)

DOES THE IID ASSUMPTION HOLD?

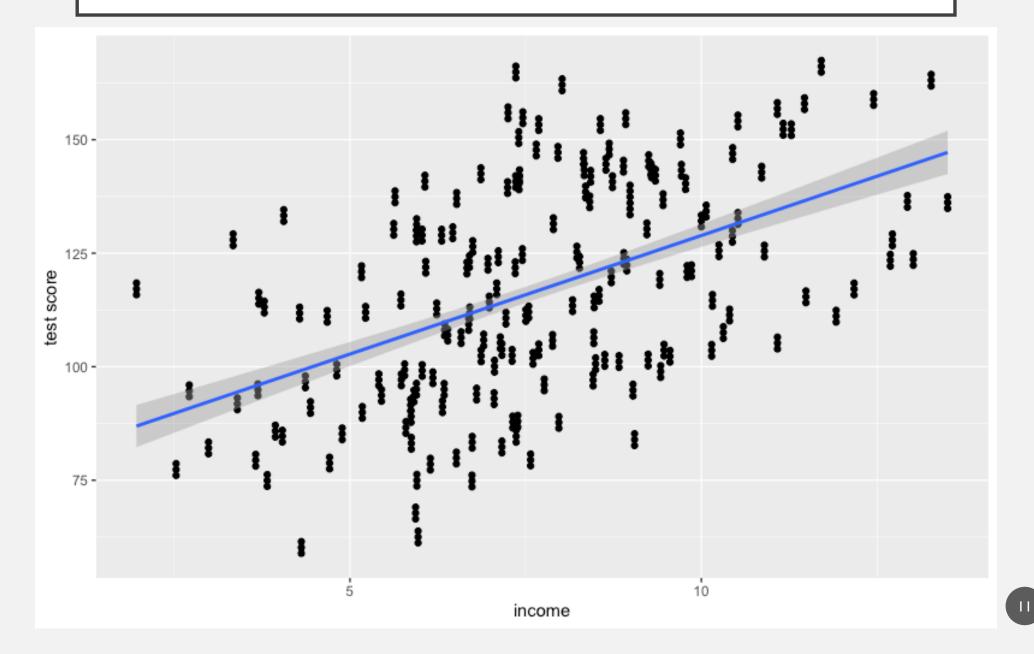
- Students take a reading test 3 times during the school year.
 - All students in third grade take the test
 - The test is administered at 3 schools
 - We obtain 4 variables:
 - (1) student test score, (2) test wave, (3) student school, (4) student family's adjusted gross income.
- We'd want to know if students from high-income families score higher on the test than their low-income peers.



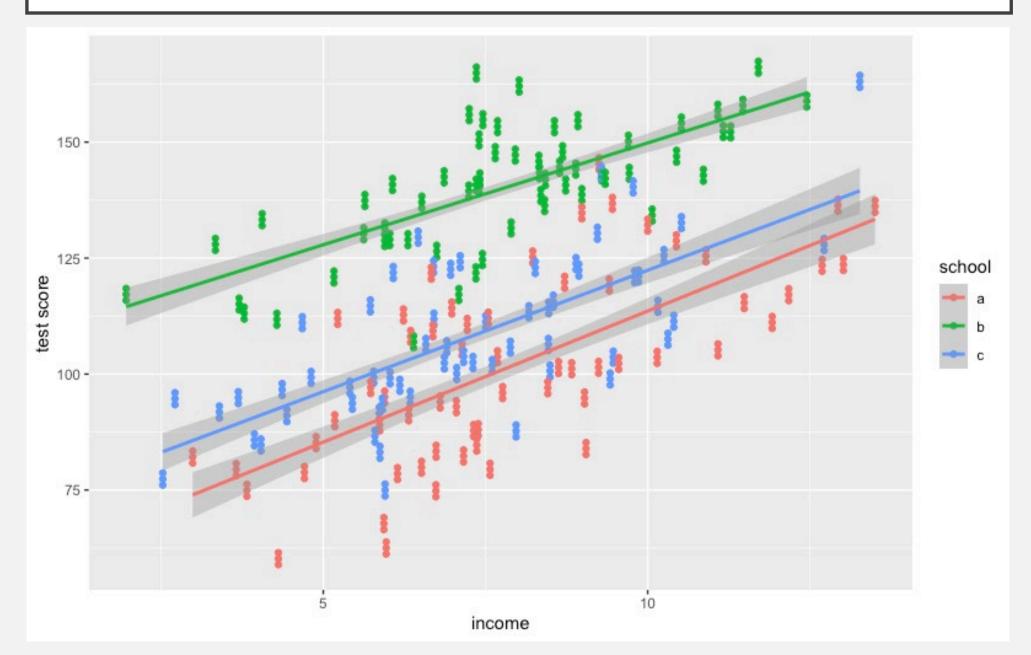
THE STRUCTURE OF THE DATA

- Each test score is produced by student *i*, taught by teacher *t*, within school s.
 - A student's test scores at wave w are likely correlated with a student's test score at wave w + 1
 - Students within schools likely have correlated test scores
- We can identify a student's test score y as y_{iwst}
- Let's call student family income x_i

IGNORING THE MULTILEVEL STRUCTURE



INCORPORATING SCHOOL INTO THE MODEL



DESCRIBE THE MULTILEVEL STRUCTURE OF AFCARS

AFCARS FOSTER CARE ANNUAL FILE DATA STRUCTURE

- AFCARS provides annual case-level information on all children in foster care in the US
- It provides a single entry per child-year
- It includes an anonymized unique identifier for each child that is (generally) valid within states over time
- It includes data on the state with custody of the child, the county of the agency that has responsibility for the case, and many other case characteristics

THE MULTILEVEL STRUCTURE OF AFCARS

- Case-years are nested within children
- Children are nested within counties
- Counties are nested within states
- States are subject to national trends and policy (time)

Ignoring this structure can produce misleading inferences!

ESTIMATE A SIMPLE MULTILEVEL MODEL

THE BASIC MULTILEVEL MODEL

• We can describe the simple regression model for individual *i*:

 $y_i \sim Normal(\mu_i, \sigma^2)$ $\mu = \beta_0 + \beta_1 x_i$

• The basic multilevel model extends this, by adding a grouplevel intercept for group *j*

 $y_{ij} \sim \text{Normal}(\mu_{ij}, \sigma^2)$ $\mu = \beta_0 + \beta_1 x_i + \delta_j$ $\delta \sim \text{Normal}(0, \sigma_{\delta}^2)$

ESTIMATING A MULTILEVEL MODEL USING AFCARS

- This demonstration uses R , the Ime4 package, and the 2019 AFCARS child file.
 - In Stata, you can use megIm, or PROC MIXED in SAS

GETTING SET UP

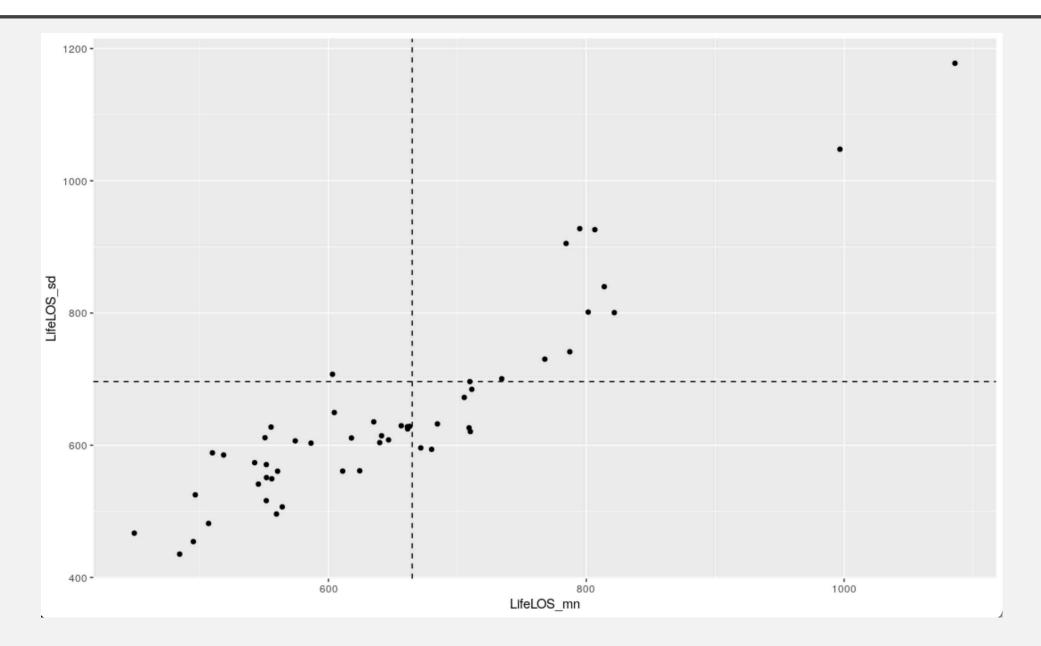
install the lme4 package if needed
#install.packages("lme4")
load the package
library(lme4)

read in afcars 2019 FC child file
afcars19<-read.delim("./afcars/FC2019v1.tab")</pre>

IS THERE A MULTILEVEL STRUCTURE HERE?

>	afcars19 %>% sample_n(5)					
	STATE	SEX	AgeAtStart	LifeLOS		
1	55	2	3	1212		
2	45	2	8	10		
3	39	1	7	519		
4	53	2	1	210		
5	26	1	8	1452		

STATE LEVEL MEANS AND STANDARD DEVIATIONS (LIFELOS)



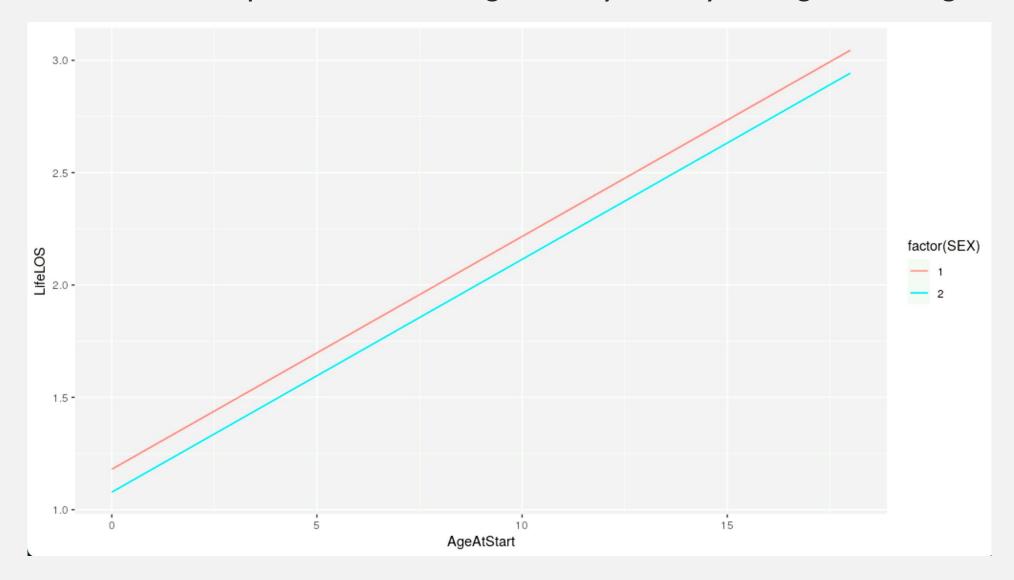
ESTIMATING A NAIVE MODEL

- First we'll estimate a linear model for lifetime length of stay (in years) as a function of child age and child sex
- $LifeLOS_i = \beta_0 + \beta_1 \times Age + \beta_2Sex$

> +	• m1<-lm(LifeL(• fact)S ~ AgeAttor(SEX),	tStart +		
+		= afcars1))		
>	•				
>	• tidy(m1)				
#	⁴ A tibble: 3 >	< 5			
	term	estimate	std.error	statistic	p.value
	<chr></chr>	<dbl></dbl>	<db1></db1>	<db1></db1>	<db1></db1>
1	(Intercept)	1.08	0.004 <u>14</u>	262.	0
2	AgeAtStart	0.112	0.000 <u>393</u>	285.	0
3	factor(SEX)2	-0.097 <u>4</u>	0.004 <u>48</u>	-21.8	7.27e-105

INTERPRETING THE MODEL

• Let's estimate the expected lifetime length of stay for boys and girls at all ages



ESTIMATING A MULTILEVEL MODEL TO ACCOUNT FOR STATE VARIATION

- Next, we'll add a *random effect* for each state. This estimates a separate intercept for each state.
- $LifeLOS_{is} = \beta_0 + \beta_1 \times Age + \sigma_s$

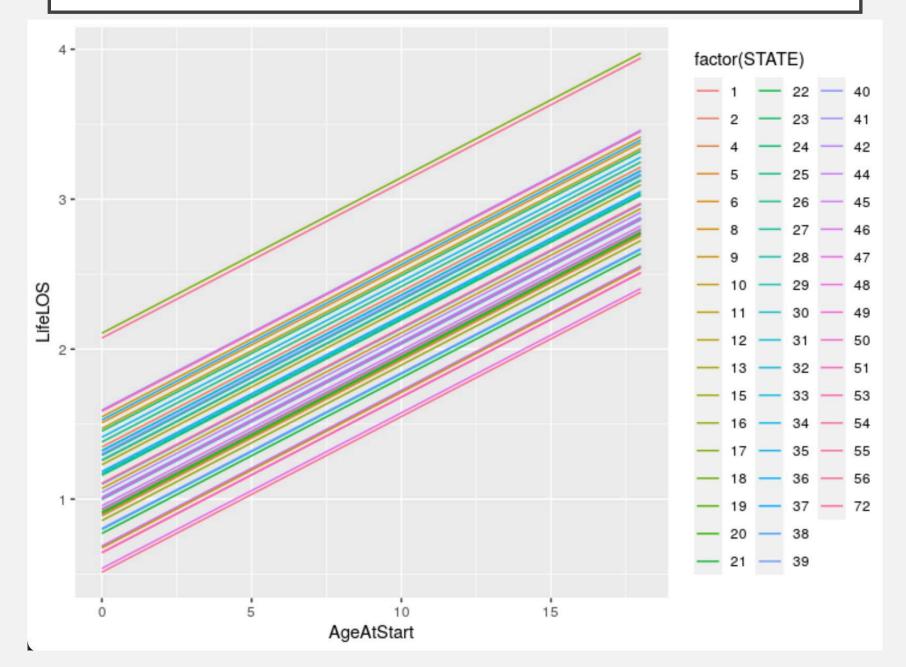
NDACAN Summer	Training Series, 2021
---------------	-----------------------

Random effects:					
Groups	Name	Variance	Std.Dev.		
STATE	(Intercept)	0.1191	0.345		
Residual		3.2819	1.812		
Number of	obs: 610595	, groups:	STATE, 52		

Fixed effects:

	Estimate	Std.	Error	t value
(Intercept)	1.1194244	0.04	81413	23.25
AgeAtStart	0.1037294	0.00	04245	244.34
factor(SEX)2	-0.1090684	0.00	046410	-23.50

INTERPRETING THE MODEL



25

NEXT STEPS

- Additional possible levels for multiple years of data: individual-level, year, county
- Here we've estimated intercepts, but we can also estimate random slopes
- Random slopes and intercepts allow us to flexibly fit models with varying underlying relationships between variables
- These models are very effective ways to model differences in units across places and over time.

QUESTIONS?

FRANK EDWARDS ASSISTANT PROFESSOR, RUTGERS FRANK.EDWARDS@RUTGERS.EDU

SARAH SERNAKER STATISTICIAN, DUKE SARAH.SERNAKER@DUKE.EDU

NEXT WEEK...

Date: August 11th

Presenter: Sarah Sernaker

Topic: Latent Class Analysis