
WELCOME TO NDACAN MONTHLY OFFICE HOURS!

N AT ION AL DATA ARCHIVE ON CHILD ABUSE & NEGLECT

DUKE UN IVERS ITY & CORNELL UN IVERS ITY

• The session will begin at 11am EST

• 11:00 - 11:30am – LeaRn with NDACAN (Introduction to R)

• 11:30 - 12:00pm – Office hours breakout sessions

• Please submit LeaRn questions to the Q&A box

• This session is being recorded.

• See ZOOM Help Center for connection issues:

https://support.zoom.us/hc/en-us

• If issues persist and solutions cannot be found through Zoom,

contact Andres Arroyo at aa17@cornell.edu.

1

https://support.zoom.us/hc/en-us

LEARN WITH NDACAN

Created by SaRah SeRnakeR

2

WHY R?

• Built for statistical computing

• Compatible with all computing systems (Windows, Mac, Linux)

• Open - source, free

• State of the art graphics

3

MATERIALS FOR THIS COURSE

• Course Box folder (https://cornell.box.com/v/LeaRn-with-R-NDACAN-2024-2025)

contains

• Data (will be released as used in the lessons)

• Census state - level data, 2015 - 2019

• AFCARS state - aggregate data, 2015 - 2019

• AFCARS (FAKE) individual - level data, 2016 - 2019

• NYTD (FAKE) individual - level data, 2017 Cohort

• Documentation/codebooks for the provided datasets

• Slides used in each week’s lesson

• Exercises as that correspond to each week’s lesson

• An .R file that will have example, usable R code for each lesson – will be updated and

appended with code from each lesson
4

https://cornell.box.com/v/LeaRn-with-R-NDACAN-2024-2025

MATERIALS FOR THIS COURSE

• Using R in Action as a guide and reference to go with slides

• https://www.cs.uni.edu/~jacobson/4772/week11/R_in_Action.pdf

• Other useful resources

• R for Data Science: https://r4ds.had.co.nz/

• Intro to R for Social Scientists: https://jaspertjaden.github.io/course-intro2r/

• Link to list of even more useful resources:

https://guides.library.brandeis.edu/c.php?g=302090&p=2013481

5

https://www.cs.uni.edu/~jacobson/4772/week11/R_in_Action.pdf
https://r4ds.had.co.nz/
https://jaspertjaden.github.io/course-intro2r/

WEEK 1: INTRODUCTION TO R

September 30, 2024

6

DATA USED IN THIS WEEK’S EXAMPLE
CODE

• Census aggregate data from 2015 - 2019 (census_2015_2019.csv)

• 8 columns: cy, stfips , state, st , sex, race6, hisp , pop

• 6120 rows: population counts for each state from 2015 - 2019, over sex X race6 X

hisp

• Publicly available from CDC Wonder: https://wonder.cdc.gov/single-race-

population.html

7

PROGRAMMING IN R

• “R” is a programming language, specifically built for statistical computing and

analyses

• Open - source, fully free and downloadable through The Comprehensive R Archive

Network (CRAN)

• RStudio is the graphical user interface (GUI) that makes writing R code and

working with data much easier and more manageable

8

GETTING STARTED WITH R

1. Download and install R programming language from CRAN:

• https://cran.r-project.org/

2. Download and install RStudio from Posit:

• https://posit.co/download/rstudio-desktop/

3. Open RStudio

4. Click the “File” button at the top, then “New File”, then “R Script” to open

a new R script to work in.

• R scripts are where we write executable code and programs that we can

save and re - run

9

https://cran.r-project.org/
https://posit.co/download/rstudio-desktop/

R STUDIO INTERFACE

10

R script

R console

R environment

Graphical output

and help systems/ details

about packages or

functions

11

R STUDIO INTERFACE: OVERVIEW

R script

Where to write code and

programs that can be

saved as an R file that can

be easily shared with

others, and re-run as

needed

12

R STUDIO INTERFACE: R SCRIPT

R console

Where snippets of code can be
run (e.g. help(),
install.packages().
Output will appear here, or

progress bars (such as from

loading packages or data).

ERRORS and WARNINGS will

appear here in red (meaning

something is wrong with your

code) – always read and resolve

warnings and errors.

13

R STUDIO INTERFACE: R CONSOLE

R environment
Where the results of the

executed code are saved,

e.g. variables, data

matrices/data frames

14

R STUDIO INTERFACE: R ENVIRONMENT

Graphical output

and help systems/ details

about packages or

functions

Where figures and

visualizations will appear.

Where the help()function

will output information about

how to use functions and

packages.

15

R STUDIO INTERFACE: AREA FOR GRAPHICAL OUTPUT

PROGRAMMING IN R

16

R FUNCTIONS AND PACKAGES

• There are a lot of built-in functions for basic statistical analyses – called “base R”
functions

• Anything not already built - in to R must be installed from external packages from
CRAN (or GitHub in some cases)

• Tidyverse syntax and suite (tidyverse), advanced and niche methodologies (survey,
mice), state of the art methods (neuralnet), advanced graphics (ggplot2)

• install.packages (‘PACKAGENAME’)

• Must load any needed (and already installed) packages at the start of your
script/coding

• library(PACKAGENAME) # note there are no quotes here

• Can also reference functions within library using double colons
LIBRARYNAME::FUNCTION_in_LIBRARYNAME()

17

DOCUMENTATION AND HELP

• Package documentation

• CRAN website

• Function documentation

• Use the help(FUNCTIONNAME)function to access

• Use ??SEARCHTERM to browse functions in downloaded packages related to

search term

• Any supplemental documentation relating to a package published elsewhere

(just Google around)

• For example, MICE has a great published article with lots more context and examples

with it: https://www.jstatsoft.org/article/view/v045i03

18

PROGRAMMING CONCEPTS TO REFRESH

• Data types

• String, characters, numeric, factor, ordered, logical (TRUE/FALSE)

• Matrix, data frame, vector, lists

• Missing/invalid values: NA, Null, Inf

• Variables

• Assigning variables: e.g. x < - 3

• Using and manipulating stored variables or objects

• Conditionals or loops

• ‘if else’ statements

• ‘for’ loops

19

PROGRAMMING CONCEPTS TO REFRESH

• Operators

• <, <=, >, >=, ==, !=, !, a|b, a & b

• Coding style

• Using spaces, indents, new lines in a way that makes code easier to read

• Comments

• Thoroughly comment code using # with details about what code does and other

relevant information – not just helpful for others but for future you!

• Seeking programming help

• Google, Stack overflow

• help(FUNCTIONNAME)

• ??SEARCHTERM 20

READING DATA INTO R

• Some external packages offer datasets included in the library
(see https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/00Index.html)

• Read from comma or tab separated files (.csv, .tab, .txt)

• read.table (file = “C:/pathname/ DATATABLE.tab ”)

• read.csv (file = “C:/pathname/ DATATABLE.csv”)

• Read excel – need to use external package to read .xlsx files like readxl

• readxl: : read_xlsx (file = “C:/pathname/ DATATABLE.xlsx ”)

• Read data from other programming language formats (Stata, SPSS, SAS) – need to use external package like
haven

• haven:: read_spss (file = “C:/pathname/ DATATABLE.sav ”)

• haven:: read_stata (file = “C:/pathname/ DATATABLE.dta ”)

• haven:: read_sas (file = “C:/pathname/DATATABLE.sas7bdat”)
21

https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/00Index.html

CONSIDERATIONS WHEN WRITING
CODE

• Conceptualize what you want to do first

• Sketch out plan and pseudo code, especially for figures and tables

• Understand what you can get out of your data and any limitations you

may face when using it in R and any R package limitations

• Some very niche or highly complex combination of analyses may be lacking

from existing R packages)

• There are many ways to accomplish the same task and approach writing a

program, do what makes most sense to you with however intermediate steps

• Use informative but concise variable naming conventions and formats,

• use _ in names, upper and lower cases

22

CONSIDERATIONS WHEN WRITING
CODE

• Use common programming format standards and guidelines to make

code consistent, readable, and maintainable

• Comment, comment, comment code

• Use indentations and line breaks for readable

• Use informative but concise variable naming conventions and formats,

• use _ in names (e.g. var_yr2010), upper and lower cases (e.g.

raceEthn)

• Try to avoid “hard - coding” values, may cause errors later

• For example, rather than calculating the mean of a variable as 2.3 and
setting x = 2.3. Instead, define x = mean(VARIABLE)so that if

VARIABLE changes at all the mean will update in the code accordingly 23

CONSIDERATIONS WHEN WRITING
CODE

• Code in R can be split across multiple lines – must be split in such a way that

the code would continue on and not just end, lines should not start with

operators.

For example:

Would just end at line 1 and throw error at line 2

(line 1) X = 1 + 2 + 3

(line 2) + 4

Would evaluate full summation

(line 1) X = 1 + 2 +

(line 2) 3 + 4 24

ADDITIONAL RANDOM R TIPS

• R is case sensitive

• Use < - or = to assign or create variables in R

• Vectors are created using c(), must all be same data type, for example:

c(“one”, “two”, “three”,”four”)or c(1,2,3,4,5) or

c(x,y)

• Index variables within a data table using dollar signs DATASET$VAR1 or

brackets, DATASET[, “VAR1”]

25

ADDITIONAL RANDOM R TIPS

• Check data types, and know how to do type conversions – lots of errors or

problems arise because of incompatible or incorrect data types, e.g. categorical

variables in a model as numeric

• Characters can be referenced with single or double quotes – but if you have

quotes within quotes, the outer quotes should differ from the inner quotes, ex.

“County’s population”, or ‘The “substantiated” cases’

• Many coding techniques can be combined into one line (e.g. simultaneously

using logical statements, subsetting syntax, assigning new values)

26

MANIPULATING DATA IN R

• Joining data

• merge(DATA_A, DATA_B, by = ” shared_variable ”)

• cbind (DATA_A,DATA_B)

• rbind (DATA_A,DATA_B)

• Subsetting /filtering data

• subset(DATA, var1 == CONDITION & var2 < 100)

• sample(DATA)

• Mutating or creating variables, for example

• DATA$var1_rate1k = DATA$var1 / 1000

• DATA$sex = ifelse (DATA$sex == 1, “Male”, “Female”)

27

STRING DATA IN R

• Sort

• sort()

• Look for character or substring

• grep(), grepl ()

• Join strings

• paste()

• Split

• strsplit ()

• Taking substring

• substr ()

• String length

• nchar ()

• Replace string

• str_replace ()

• Make upper or lower case

• str_to_upper (),
str_to_lower ()

28

October 18th, 2024 at

11am ET

Topic: "Tidyverse" Functions

29

NEXT SESSION…

	Welcome to NDACAN Monthly Office Hours! National Data Archive on Child Abuse Neglect Duke University Cornell university
	LeaRn with NDACAN
	Why R?
	Materials for this Course
	Materials for this course
	Week 1: Introduction to R
	Data used in this week’s example code
	Programming in R
	Getting started with R
	R studio interface
	R studio interface: overview
	R studio interface: R script
	R studio interface: r console
	R studio interface: r environment
	R studio interface: area for graphical output
	Programming in R
	R functions and packages
	Documentation and help
	Programming concepts to refresh
	Programming concepts to refresh
	Reading data into R
	Considerations when writing code
	Considerations when writing code
	Considerations when writing code
	Additional random R tips
	Additional random R tips
	Manipulating data in R
	String data in R
	Next Session…

